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The lattice parameter of MoSCI was determined at different temperatures from 30 to 437°C with X-ray diffraction 
methods. The coefficient of thermal expansion of this cubic compound was determined from the above data. At 550°C it 
was found that the compound irreversibly transforms to a-MoO3, which belongs to the orthorhombic system. 

Recently, Perrin, Cherrell & Sergent (1975) prepared new 
thiohalides of the type MoSX (X = CI, Br, I). These com- 
pounds crystallize in the cubic system with the space group 
F43 m. The thiohalides are diamagnetic. 

The specimen used in the present investigation was 
prepared by Dr Perrin. The starting mixtures (MoC12 + 
Mo + 2S) were put in an evacuated and sealed quartz 
ampoule, and heated at 1000°C for about 24 h. The com- 
pound is dark in colour and reported to be stable in air. 

The specimen was annealed for 20 h at 400°C, and gave a 
good X-ray powder photograph at room temperature. A 
Unicam 19 cm diameter was employed to collect the 
experimental data at high temperatures. The experimental 
details for collecting X-ray data and the method of calculating 
the lattice parameter at different temperatures were described 
in an earlier publication from this laboratory (Deshpande & 
Ram Rao Pawar, 1962). All the diffraction lines on the 
photograph, taken at room temperature, were indexed with 
the d spacings as calculated from the values of the lattice 
parameter (9.68 A) reported by Perrin et al. (1975), and in 
conformity with the space-group extinctions of F43 m. 

The reflexions measured and used in the calculation of the 
a parameter were 951(<q), 955(ai) , 10,6,0(~h) , 937(tt0, 
12,0,0(al), l l ,5,1(al) and 12,2,2(a~tt2) recorded in the 

Bragg-angle region 55 to 79 °. The values of the lattice 
parameter at different temperatures are given in Table 1. 

The standard error in the value of a is _+0.001 /k as 
calculated by the method of Jette & Foote (1935). From a 
plot of the temperature vs lattice parameters with the 
graphical method suggested by Deshpande & Mudholkar 
(1961), the coefficient of thermal expansion of MoSCI was 
evaluated. The data were subjected to least-squares analysis 
and can be represented by the following expression: 

at(°C-l)  = 7.985 x 10 -6 + 4-06 x 10-9T + 4-28 x l0 -12 T 2 

where T is the temperature in °C. 
In Fig. 1 the observed and calculated values of ~t are shown 

as a function of temperature. The mean value of st in the 
temperature range 30 to 437°C is ~ = 9.34 x 10-6°C -I.  

After 437°C, the next X-ray photograph was taken at 
550°C. It was quite different in comparison with the earlier 
photographs. The number of lines which appeared on the 
photograph indicated that the specimen had transformed to a 
system of lower symmetry. The sample, which had been 
black in colour, became pale yellow. 

A comparison of the observed d spacings with those quoted 
by Swanson & Fuyat (1953) indicated that the specimen 
transformed to a-MoO 3. The colour of the transformed 
specimen also conforms with that of a-MoO 3 (Wells, 1962). 

Table 1. Lattice parameters o f  MoSCI at different 
temperatures 

Temperature a-lattice 
No. (°C) parameter (A) 
1 30 9.6777 
2 109 9.6815 
3 201 9.6941 
4 325 9-7035 
5 437 9.7146 

Table 2. Lattice parameters o f  a-MoO 3 

No. a(A) b(A) c(A) References 

1 3.92 1 3 . 9 4  3.66 Anderson & Magn+li (1950) 
2 3.962 13.858 3.697 Swanson & Fuyat (1953) 
3 4.101 13.865 3.693 Present study 
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Fig. 1. Temperature variation of the coefficient of thermal 
expansion of MoSCI. 
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With the d spacing data and an IBM 1620 computer we have 
refined the lattice parameters of or-MoO 3, and the values 
obtained are tabulated in Table 2. 

A probable explanation for the transformation may be 
that the sulphur and chlorine decomposed from MoSC1 and, 
on taking oxygen from the air, the compound a-MoO 3 was 
formed. 
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The usual Bloch wave description of electron diffraction from higher-order Laue zones requires the solution of a 
quadratic eigenvalue equation. In this note we show that in the high-energy case this eigenvalue equation reduces to 
linear form. 

Recently there has been interest in the theoretical descrip- 
tion of high-energy electron diffraction, in the Laue 
geometry, from higher-order Laue zones. For instance, 
Buxton (1976) has used perturbation methods to study 
diffraction effects from non-zero Laue zones. In this note 
we demonstrate that the quadratic eigenvalue problem one 
obtains in Bloch wave descriptions of high-energy electron 
diffraction from higher Laue zones can be reduced to a 
linear eigenvalue problem. Before doing this we will 
comment on the validity of the Bloch formalism. 

Consider a planar crystal with a coordinate system such 
that the z axis is normal to the crystal surface and the xy 
plane is coplanar with the zero Laue zone. If this crystal is 
now assumed to be infinite in the xy plane, then the 
electrostatic potential in this plane can be expanded as a 
Fourier series. If we now restrict ourselves to a discussion 
of diffraction maxima that lie on the zero Laue zone then 
the Bloch formalism is rigorous. However, when we 
consider diffraction from higher-order Laue zones, prob- 
lems arise since the crystal is finite in the z direction. 
Expressing the potential in this direction as a Fourier series 
introduces an error whose magnitude is of the order of an 
atomic spacing divided by the thickness of the crystal. 
Keeping this fact in mind, we will proceed in the 
assumption that the crystal potential has a Fourier series 
and that the Bloch formalism is valid. 

We begin with the general eigenvalue equation of high- 
energy electron diffraction (Colella, 1972) which we write 
as det(A) = 0. The elements of A are written 

Ag h = {K 2 - [k(/') + g]Z}6g h + (1 - fieh) ug_e (1) 

where the k(j) are the unknown Bloch wave vectors, g is 
the reciprocal-lattice vector, and 6~h is the Kronecker delta 

function. The coefficients ug are related to the Fourier 
coefficients of the crystal potential by ug = 2mevg/h 2, and 
K 2 = 2meE/h 2 - e2E2/c2h 2 + Uo, where E is the potential 
difference through which the electron was initially accelerated 
prior to its incidence upon the crystal. Now let us transform 
(1) into a more convenient form by defining 

k(j)  = Z + yU)~2 (2) 

where X is the wave vector of the electron in vacuum and 
[&,[ = (2meE - e2E2/c2)l/2/h. Then, substituting (2) into (1) 
gives us 

2 [1+ 
(3) 

In principle, construction of the dispersion surface y(j), 
as a function of g for a given crystal potential, is 
straightforward. First, one selects n beams with the only 
restriction being that n > j .  Then one solves det (A) - -0 ,  
where A is an n x n matrix. The process is repeated, letting 
n --, m, until the eigenvalue converges. In practice, because 
v0/E _~ 10 -4 for 100 keV electrons, and Vg/E is even smaller 
for the other Fourier coefficients, two approximations are 
justified which simplify the dispersion-surface construction. 
The first is the n-beam approximation in which one takes a 
finite number of beams, thereby restricting A to n x n, and 
one avoids taking the limit n --, m. The important beams are 
determined by the usual Ewald-sphere construction. Once 
any and all strongly diffracted beams are included, there is 
rapid convergence of the non-negligible beam intensities 


